Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Protein Sci ; 31(1): 269-282, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34767272

RESUMO

Small-angle X-ray scattering (SAXS) is an established technique for structural analysis of biological macromolecules in solution. During the last decade, inline chromatography setups coupling SAXS with size exclusion (SEC-SAXS) or ion exchange (IEC-SAXS) have become popular in the community. These setups allow one to separate individual components in the sample and to record SAXS data from isolated fractions, which is extremely important for subsequent data interpretation, analysis, and structural modeling. However, in case of partially overlapping elution peaks, inline chromatography SAXS may still yield scattering profiles from mixtures of components. The deconvolution of these scattering data into the individual fractions is nontrivial and potentially ambiguous. We describe a cross-platform computer program, EFAMIX, for restoring the scattering and concentration profiles of the components based on the evolving factor analysis (EFA). The efficiency of the program is demonstrated in a number of simulated and experimental SEC-SAXS data sets. Sensitivity and limitations of the method are explored, and its applicability to IEC-SAXS data is discussed. EFAMIX requires minimal user intervention and is available to academic users through the program package ATSAS as from release 3.1.


Assuntos
Processamento Eletrônico de Dados , Espalhamento a Baixo Ângulo , Software , Difração de Raios X , Cromatografia
2.
Biophys Chem ; 234: 16-23, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29328990

RESUMO

The influenza virus polymerase complex is a promising target for new antiviral drug development. It is known that, within the influenza virus polymerase complex, the PB1 subunit region from the 1st to the 25th amino acid residues has to be is in an alpha-helical conformation for proper interaction with the PA subunit. We have previously shown that PB1(6-13) peptide at low concentrations is able to interact with the PB1 subunit N-terminal region in a peptide model which shows aggregate formation and antiviral activity in cell cultures. In this paper, it was shown that PB1(6-13) peptide is prone to form the amyloid-like fibrillar aggregates. The peptide homo-oligomerization kinetics were examined, and the affinity and characteristic interaction time of PB1(6-13) peptide monomers and the influenza virus polymerase complex PB1 subunit N-terminal region were evaluated by the SPR and TR-SAXS methods. Based on the data obtained, a hypothesis about the PB1(6-13) peptide mechanism of action was proposed: the peptide in its monomeric form is capable of altering the conformation of the PB1 subunit N-terminal region, causing a change from an alpha helix to a beta structure. This conformational change disrupts PB1 and PA subunit interaction and, by that mechanism, the peptide displays antiviral activity.


Assuntos
Antivirais/química , Antivirais/farmacologia , Vírus da Influenza A/efeitos dos fármacos , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/farmacologia , Proteínas Virais/química , Testes de Sensibilidade Microbiana , Proteínas Virais/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...